/r/mathbooks

Photograph via snooOG

Links to published mathematics textbooks that have been released online for free by their authors/publishers. No pirated books are allowed!

Please post any questions, comments or suggestions here!.


List of all textbook subreddits:

Browse all new textbooks.

/r/mathbooks

15,923 Subscribers

0

help

"I was a student in preparatory classes and now I want to go back and work on the math curriculum at that level. I’ve found three good analysis books that cover the entire program and include hundreds of exercises. However, my concern is what branch of mathematics I should study afterward. I want to dedicate my life to math, but I'm worried that after putting in a lot of effort, I’ll encounter obstacles like a lack of resources, especially since I’m used to working with a lot of materials."

0 Comments
2024/11/02
00:04 UTC

39

Just published a book on number theory

8 Comments
2024/10/30
23:05 UTC

1

Fundamentals of differential equations and boundary value problems, Nagle, Saff Snider

does anyone have a pdf file of this book 9th generationFundamentals of differential equations and boundary value problems, Nagle, Saff Snider

0 Comments
2024/10/29
18:47 UTC

5

What books can I read as a highschooler to delve in the beauty of maths ?

What books , research papers , academic journals can I read in mathematics as a highschooler . I have looked for lot of research papers in general but as of now I just lack the knowledge and skill set to understand it nicely . Is there any reading material out there which is easier for me to understand and develops my interest in mathematics even more . Something which is not that fancy and daunting but instead keeps me glued and introduces me to the beauty of mathematics ?

7 Comments
2024/10/28
18:44 UTC

3

Any good introductions on multiphase flow?

0 Comments
2024/10/18
11:19 UTC

7

Best Dynamical Systems Book for Self-Learners

Hello, I'd like to start learning about Dynamical Systems but I'm not sure where to start. Any book recommendations would be helpful!

2 Comments
2024/10/18
03:08 UTC

7

Need help finding a practice book for a kid struggling with 7th grade math. Help!

Have looked on amazon but it seems all options (at least the top listings) don’t have good explanations and/or have a lot of mistakes.

Any suggestions will be appreciated.

0 Comments
2024/10/16
11:53 UTC

7

I’m looking for a book that covers logic rigorously, but is also beginner friendly for a high schooler like me.

I know I am probably getting in way over my head and that this subject can be extremely challenging and boring at times, but I am seeking guidance on it. A book like this probably isn’t super common, so help is appreciated.

4 Comments
2024/10/11
19:46 UTC

10

Best Measure Theory Book for Self-Learners

Hi everyone,

I’m pursuing a Master’s degree in Mathematics and coming from a physics background (undergrad in Italy). I’m now looking to dive deeper into measure theory, which I’ll need for future studies in analysis and probability. My professor has recommended a few textbooks for the course, but I won’t be able to attend the lectures regularly, so I need a resource that’s well-suited for self-study.

Here are the books my professor suggested:

•	L. Ambrosio, G. Da Prato, A. Mennucci: Introduction to Measure Theory and Integration
•	V.I. Bogachev: Measure Theory, Volume 1 (Springer-Verlag)
•	L.C. Evans, R.F. Gariepy: Measure Theory and Fine Properties of Functions (Revised Edition, Textbooks in Mathematics)
•	P.R. Halmos: Measure Theory
•	E.M. Stein, R. Shakarchi: Real Analysis: Measure Theory, Integration, and Hilbert Spaces (Princeton Lectures in Analysis 3)

Since I’ll be studying on my own, I’m wondering which of these books is the best fit for self-learners, particularly with a physics background. I’m looking for something rigorous enough to deepen my understanding but also approachable without a lecturer guiding me.

Would love to hear your thoughts, especially if you’ve worked through any of these texts! Thanks!

5 Comments
2024/09/21
19:46 UTC

6

Your favorite math texts that have exercises integrated into the theory?

For instance,

Lee's topological manifolds

Carothers Real Analysis

and Jones's measure theory

all have exercises integrated into the text, such that you do a bit of reading (maybe a page) and then there are exercises interspersed in the text. What are some other books that have this?

3 Comments
2024/09/20
10:56 UTC

8

a^2-b^2 - Geometrical Explanation and Derivation of a square minus b square

1 Comment
2024/09/11
20:16 UTC

6

Giving away a copy of Klaus Hulek's Elementary Algebraic Geometry (UK)

A textbook I've not personally read but highly commended by one of the professors at my university. Suitable for the advanced undergraduate or beginning graduate student in algebraic geometry. Near-perfect condition

1 Comment
2024/09/06
13:10 UTC

11

Algebra & Geometry A First Course on Varieties" by Clader and Ross

Nicely written book that does not require commutative algebra as a prerequisite. For the moment it is available from the personal page of Dustin Ross, but the autors are looking for a publisher. Comparing to the books by Reid or by Smith and company this one is a truly introduction.

1 Comment
2024/09/01
15:38 UTC

10

Mathematical logic

I intend to write my graduation thesis on Predicate Logic, which is part of the requirements for obtaining a Bachelor’s degree in Mathematics, specifically in predicate logic because I am very interested in this field. However, the extent of my knowledge is currently insufficient to write a solid thesis, so I need intermediate and advanced books to study more deeply, especially concerning the meaning of predicates and the relationship between the predicate and the subject. I understand this concept intuitively, but no specific definition of this predicative relationship comes to mind except that it is a function that maps variables to a set of true and false. Nevertheless, I wonder how this function can be defined precisely. I am also particularly interested in studying the algebra of predicate logic. The courses I have taken in logic are:

  1. Logic and Set Theory I in college.
  2. Logic and Set Theory II in college.
  3. I am well-versed in the ZFC model.
  4. I have knowledge of Aristotelian logic and have read several books on this topic.
4 Comments
2024/08/27
15:30 UTC

8

Looking for a high school geometry textbook for teaching an 8 year old. AOPS is a little too dense, everything popular and modern (2000s,2010s) from Amazon is too juvenile.

Having trouble finding a decent curriculum/text book for geometry for a very advanced 8 year old. Books are either incredibly dense or absurdly juvenile (my son complained the most recent book I got him from Amazon was just full of colors and wackiness instead of of just spelling out a rule and giving him examples).

I already have the aops geometry book, this is my baseline I will use with him if I have too, we've already worked our way through their algebra book, but their books are obviously geared towards like an advanced 12 year old and definitely on the upper bounds of what we need. We made it work over the summer when we had a lot of free time but I'd like something a little less aggressively paced/less dense for learning during the school year after he's already spent all day at school.

Ideally I'm looking for a classic 70's-1980's high school text book that simply lays out whatever the lesson/concept is for that section then works through it and has examples and questions.

Again I like AOPS, I know about AOPS, I expect the default advice is just to use those books and I don't disagree with that but I've got a unique situation where my very advanced but very young kid would benefit from a textbook that was maybe geared towards a normal 15 year old, instead of an advanced learner if that makes any sense.

2 Comments
2024/08/24
19:36 UTC

5

Help me choose between two differential equations books or recommend your favorite

I'm currently searching for a book on differential equations. I've managed to narrow down the initial selection to two books: Differential Equations with Applications and Historical Notes, 2017 by George F. Simmons and Differential Equations and Their Applications: An Introduction to Applied Mathematics, 1993 by Martin Braun.

I'm simply a person looking for a more comprehensive coverage of the subject. If you have any experience with any of the two books, please tell me what you think of it. If you have a different recommendation, please drop it and explain why you think it's a good read. If you're someone with a good background in differential equations but are not familiar with the books and have some free time, you can easily acquire free copies online and review them.

2 Comments
2024/08/21
19:26 UTC

10

Is there a single book that covers everything from algebra to pre-calculus?

The artofproblemsolving recommendation is their five books for this!

  1. Intro to Algebra
  2. Intro Counting & Probability
  3. Intro Geometry
  4. Intermediate Algebra
  5. PreCalculus

Looking at their table of contents, many topics are revisited in the book series, you can see too much overlapped. They probably go deeper on the subjects they overlapped but is it really necessary? Seems more time consuming.

I noticed some other stuff like having polynomial addition/subtraction/multiplication in the first book (intro to algebra) and doing polynomial division in the forth book (intermediate algebra).

All those books together are like ~4000 pages (including excercises).

7 Comments
2024/08/10
19:41 UTC

7

Recommendations for books similar to Ash&Gross: "Elliptic Tales - Curves, Counting and Number Theory" in difficulty?

I also posted this in r/math and r/learnmath - don't know if this forum is the right one? :) ... Here goes:

I almost finished reading (and working on exercises) in the book "Elliptic Tales" by Avner Ash and Robert Gross and it was PERFECT for the amount of time, energy and existing knowledge I have to use! :) I really liked remembering my knowledge of complex numbers, groups and modular arithmetic and REALLY liked learning a lot of new stuff!!

In the Preface they write: "A certain amount of mathematical sophistication is needed to read this book. We believe that if you've had and enjoyed a college course in calculus or beyond, and if you are patient, you probably have enough of this elusive quality to enjoy any chapter of the book"(!)

I've started reading and working on their first book "Fearless Symmetry", which is also good, but a bit too basic for me, since I've taken a few college courses in math. And since I just read the Elliptic book, which is somewhat heavier.

CAN YOU PLEASE RECOMMEND ME BOOKS SIMILAR TO "ELLIPTIC TALES" IN "DIFFICULTY"? I need to be able to appreciate it without a teacher, other students, and with around a years worth of college courses of pre-existing (old dusty) knowledge. And while doing a fulltime job and raising a kid :).

Thanks a lot in advance!

3 Comments
2024/08/03
11:35 UTC

5

Which book would be the best for a highschool calc/pre calc class- Calculus Made Easy, Calculus for the Practical Man, or "Essential Calculus Skills Practice"?

I want to get something for my siblings to help them with this course. I found these three books, but I don't know which one would be best. These options are:

-Calculus Made Easy by Silvanus Thompson

-Calculus for the Practical Man by JD Thompson

or

-Essential Calculus Skills Practice Workbook with Full Solutions by Chris McMullen

1 Comment
2024/07/29
22:02 UTC

3

Best Dictation Software for Students: Take Notes, Write Papers, and Power Through Studying

0 Comments
2024/07/22
14:33 UTC

11

Other math books written in the same principle as Calculus by Morris Kline?

4 Comments
2024/07/16
17:07 UTC

0

Best Planners for College Students: Find Yours

0 Comments
2024/07/10
13:06 UTC

2

Boolean algebra and lattices

I need a book on Boolean algebra and lattices. A book with examples and question and well done theory part.

Any book suggested? Thanks.

1 Comment
2024/07/08
21:23 UTC

1

Student Athlete Mental Health: Tips, Recommendations, and Common Problems

0 Comments
2024/07/08
13:14 UTC

0

Matrix inverse and its properties

3 Comments
2024/07/06
22:08 UTC

3

Which book should I choose

I am self-learning mathematics nowadays and I was trying to study things from absolute basics and in-depth manner. I have 5 books from which I have option to choose one. I have that much background that I can pick and start anyone but which one would be better to start. If any of can rate the mentioned books separately on basis of in-depth theory and good questions, it would be a great help. If any of you have solved any of these books please have a look at others books too for common topics to rate correctly. These are my books :

Cengage Algebra

Chrystal's Elementary Algebra Part I

Chrystal's Elementary Algebra Part II

Higher Algebra by Hall & Knight

Higher Algebra by Bernard & Child

4 Comments
2024/07/06
19:09 UTC

0

10 Common Study Problems and How to Deal with Them

0 Comments
2024/07/05
15:22 UTC

25

This amazing 1966 book on curves and manifolds

Very glad to have found the entire collection

3 Comments
2024/07/02
20:37 UTC

Back To Top